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ABSTRACT

Let S and T be bounded linear operators from a Hilbert space  into a reproducing
kernel Hilbert space K of complex or real-valued functions defined on some set X.
For each x € X, let k,, € K have the property that (g, k,) = g(x) for each g € K.
Using Bessel's inequality, we obtain a sharp estimate relating Sf(x), Tf(x), S*k,
and T*k,. This estimate is then applied to obtain Bernstein-Szegd inequalities for
Fourier multiplier operators on Sobolev spaces in L2.
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1. INTRODUCTION

The classical Bernstein-Szego inequality states that

T'(x)? + n?T(x)? < n’max|T(y)|?
YER

for each real number x, and for each real trigonometric polynomial T of
degree at most n. This was extended to entire functions of exponential type
by Duffin and Schaeffer (1937). They showed that for any real number x,

f'0)? + 2 f(x)? < 2sup|f (D)2 (1)
teR

if f is an entire function of exponential type 7, and real-valued on the real
line. These kinds of estimates have also been extended to rational functions

by Borwein et al. (1994). For example, given a sequence {a; }", in C with
Im a; > 0 and any real trigonometric polynomial T of degree at most n,

f'G)? + BR()f ()* < B (x)max|f(D)]*

for each x € R where
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_ T(x) 3 1 — |ei%|?
T = [ sin(a —any2y) ¢ B = 22|elak—e”‘|2

For this, we refer the reader to Borwein and Erdélyi (1995), which also
serves as an excellent survey.

Our goal in this note is to unify L? versions of these inequalities by
considering abstract bounded linear operators on reproducing kernel Hilbert
spaces. These are Hilbert spaces K consisting of complex or real-valued
functions defined on some set X, and such that for each x € X, the mapping
f = f(x)is a continuous function from X into C. Consequently, for each
x € X, there exists a function k, € X satisfying (g, k,) = g(x) for each
g € K. The reader may consult Partington (1997) for a brief introduction to
reproducing kernel Hilbert spaces.

In this note, for example, we obtain an L?-version of Duffin and
Schaeffer's inequality (1.1) for operators of the form

Sf(x) = JRm(t)f(t)e“xdt

applied to Sobolev spaces in L?(R), where f denotes the Fourier transform

of f.

2. THE BASIC ESTIMATE

In what follows, H and XK shall denote real or complex Hilbert
spaces where K consists of functions g: X — C, and X is some given set.
The inner products and norms in H and K will be denoted by (:,)4,
I| - 3¢, ()3 and || - ||% respectively. Furthermore, we shall assume that
XK is a reproducing kernel Hilbert space. In other words, for each x € X,
there exists k, € X such that (g, k, )% = g(x), for all g € K.

We now give the basic estimate.

Lemma 2.1 Let S,T: H — K be bounded linear operators with adjoints S*
and T™ respectively. Fix f € H and x € X such that S*k, and T*k, are
linearly independent . Then

ACO):= |1S" k|17 = 1T k|13 1 (TS ki) (0|2 > 0 (2)
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and
ITF)I1>  ISf(x) = GOTS(x)|?
1T el 3 e < 1If113- 3)
with -
G) = 1Tk 172 (TS ) () @

Proof. First of all, linear independence of the vectors S*k, and T*k,
implies that the vector ||T*ky||%.S*ky — (S*ky, T*ky)3cT*k, is nonzero.
Moreover, since (S*k,, T*ky )3 = (TS*k,)(x) the square of its norm is

T R 170 hex — (S ke, Tk d3e T ke |15
= [T k17118 b 1 — ITS ks COIP T ke |1
= [IT" k| [3:A (),

with A(x) given in (2). Hence, A(x) > 0.

The remainder of the proof consists of a simple application of
Bessel's inequality to the orthonormal vectors

T*k, T kx| |25 Ky — (S*ky, Ty Y30 T Ky
U = — and v = :
Tk |2¢ |1 T* ke || 2,4/AC)

Observe that (f, T*ky )3 = (Tf, ky)3 = Tf(x) and therefore

T f™))?
|(f;u>7{|2 —m. (5)
Furthermore, we have
IKF, v) |2 _ |||T*kx||§{Sf(x) _mTf(x)P
o |1 T* k|15 ACx)
S —GOT 2
_ ISf@ - 6@ @ 1 o

A(x)

In view of (5) and (6), Bessel's inequality
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[, wael? + 1(F, 0301 < NIF1IE (7)

gives the desired estimate (3). O

Remark 2.2 Since Bessel's inequality (7) becomes an equality if f is a
linear combination of u and v, (3) becomes an equality if f is taken to be a
linear combination of S*k,. and T*k,.

3. BERNSTEIN- SZEGO INEQUALITIES FOR NON-
ANALYTIC FUNCTIONS

Our main result in this section is an L? version of Duffin and
Schaeffer's Bernstein-Szego inequality for a wide class of smooth functions
including non-analytic ones.

3.1 Sobolev spaces in L? as reproducing kernel Hilbert spaces

For a function f € L'(R), we define its Fourier transform f by

y 1 —iwx
fw) = EJRf(X)e dx

for all w € R. Accordingly, the inversion formula is given by
1 R .
(x) = — J (w)eW*dw, 8
f Nz Rf (8)
valid for almost every x € R for instance when f € L' + L? and f € L'. For
example, see Rudin (1974).
In what follows, we shall fix ¢» € L?(R) such that

@ is real-valued, non-negative, and bounded with ¢ € L*(R) (9)

and write 2(¢p) = {t € R:p(t) # 0}. Let Hy (R) be the vector space of all
functions f: R — C in L2(R) such that

f(t) =0 whenever ¢(t) = 0 and
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I ==[ If@rS <o (10)
¢ V2m Jse) 0
For f, g € Hy(R), define
Fody = = FOFTO—=
Jle = V2 Js¢) g 0)

This defines an inner product making Hy(R) a Hilbert space. The
corresponding norm is that given in (10).

If f € Hy(R), then f is integrable and the inversion formula (8)
shows that f equals almost everywhere a continuous function. Thus, we

shall assume that elements of Hy (R) are continuous.

For x,t €R, define ¢,(t) =¢(t —x). The next Iemma
summarizes some basic properties of the Hilbert space Hy (R).

Lemma 3.1 Let f € Hy(R) and x € R. Then

(@) ¢r € Hy(R) and ||y |lg = $(0).
) f(x) =Af, dx)g-

3.2 Bernstein-Szego inequality for non-analytic functions

In this section, we fix a function ¢ in L?(R) satisfying (9):
@ is real-valued, non-negative, bounded, and integrable on R.

Furthermore, we shall assume ¢ (0) = 1 and ¢ is even.

Theorem 3.2 Let m:R — C be odd, not identically constant on X(¢) =
{t € R: ¢(t) # 0} and such that ¢ - m? € L*(R) n L*(R). Suppose either

(A) inf{lm(t)|: t € Z(¢p)} > 0 or (B) sup{im(t)|:t € Z(¢p)} < o0. (11)
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Let f € Hy(R), x € R and define

1 -
Sf(x)=EJRm(t)f(t)e dt. (12)
Then
FEOR+a2Sf R < —[  for2 @3
~ 2ry ()
where

1 ~
2= jR|m<t)|2¢<t)dt.

Proof. Define p € L*(R) such that p = ¢|m|?. Trivially, Z(p) € Z(¢).
Suppose (A) holds and let u, = inf{{m(t)|: t € 2(¢p)} >0 . Then
X(p) = Z(¢p). Moreover,

Hy(R) € H,(R). (14)

Indeed, let g € Hy(R). If p(t) = 0, then @(t) = 0 and by (10), §(t) = 0.
Moreover,

||g||2=ij FIGIE a < uzllgll3.
NG S py ~ ™ ¢

Thus, (14) holds and, in fact, the inclusion is bounded.
For each h € 34 (R), we have

ISkl = Im(OR®)I*H() 7 dt = |[h]lG.

=
21 J3(p)

Thus S: Hy (R) = H),(R) is bounded as well. In fact, S is an isometry.
To obtain the desired inequality (13), we shall apply Lemma 2.1 with

H =Hy(R), K = H,(R), S: Hy(R) - H,(R) as given in (12) and with
T:Hy(R) - H,(R) as the inclusion map.
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To find the adjoint T*: 3, (R) — H(R), observe that for g € 3, (R) and
f € Hy(R),

—[ TR =01
21 Jx(¢) @)
=(9.p
1 ——dt
" Vb ! 50

This shows that T*g(t) = §(t)d(t)p(t)~* whenever t € I(p) and
T*g(t) = 0 otherwise. In particular

T p(t) = e p(t) = ¢, (1) (15)
for all t € R. Thus, T*p, = ¢, and by Lemma 3.1,
T pxllg = 1loxllf = ¢(0) = 1. (16)
Next, we compute for the adjoint of S, $*: H,,(R) = H (R).

A straightforward calculation shows that for all g € #,(R) and f €
Hep(R),

1 [ SgOf®
V2m Jy(g) 0

dt =(5"g,f)¢

= (g'Sf>p

1 OGO d

= — t.
m 2(p) p(t)

This shows that S*g(t) = §(t)m(t)p(t)p(t)~! whenever t € X(p) and
S*g(t) = 0 otherwise. In particular,

5 (t) = e *m(t) b (t) (17)
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for each t € R. Hence,
* 112 1 23
1157 pxllg = EJ]R Im(O)|°p(t)dt (18)
and since Mm@ is an odd function,

1 [ —
(S*px) () = (S"px, Prx)p = Nor JRm(t)¢(t)dt = 0.

Thus, G(x) as defined in (4) is identically zero. Likewise, in view of (18),
A(x) as defined in (2) becomes

1 ~
8 = 5= | mOPF©O:

Our hypothesis that m is not identically constant on £(¢) together with (15)
and (17) shows that S*p, and T*p, are linearly independent. In view of
(16), the estimate (3) now implies the desired result (13).

Now, suppose (B) holds and let ug = sup{|m(t)|: t € Z(¢)} < 0. Then
||Sg||?b < uﬁllgllé for each g € Hy(R) . Thus, S maps Hy(R)
boundedly into itself. The desired estimate (13) is obtained by applying
Lemma 2.1 with H = K = Hy(R), S: Hy(R) » Hy (R) as given in (12)
and with T: Hy (R) — H (R) as the identity. O

A special case of Theorem 3.2 gives an L?-version of Duffin and Schaeffer's
inequality (1) for higher order derivatives.

Corollary 3.3 Let T > 0 and k be an odd positive integer. Let f, ¢ € L?(R)
such that f (t) = 0 = ¢(t) whenever |t| > T. Then

T|f 2
|f(x)|2+‘[_2k|f(k)(x)|2 <L |f ()|

7=l e

provided ¢ is real-valued, even, inf{¢(t): [t| < 1} > 0 and ¢(0) = 1.

Proof. Apply Theorem 3.2 with m(t) = (it)* and with ¢ € L?(R)
satisfying the hypotheses of the corollary: ¢(0) = 1, ¢ is even, real-valued
and 0 on R\[—7,7], and inf{@(¢): |t| < T} > 0. Then condition (B) in (11)
is satisfied. Note that } (R) is the set of all functions g € L?(R) such that
g(t) = 0 whenever |t| > 7. Observe that by the inversion formula (8),
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2 _ L 27 2k
£2(m, $) = mJR|m(t)| d(H)dt < t*. O

4. BERNSTEIN-SZEGO INEQUALITIES
FOR SOBOLEV SPACES IN L%(T)

Here, we shall obtain periodic versions of the results of the
preceding section. First, we introduce certain reproducing kernel Hilbert
spaces consisting of 2m-periodic continuous functions.

4.1 Reproducing kernel Hilbert spaces of continuous periodic functions

Let L2(T) be the Hilbert space of all measurable 2 -periodic functions
f:R — C with ffn |f()|?2dt < o. For f € L?(T) and n € Z, we define the
nth Fourier coefficient of f by

R 1 (™ ,
fa=o| rwetrat

Let 6 € L?(T) such that
O(n) > 0 foreachn € Z and Y,ez O(n) < oo (12)

and let £(0) = {n € Z:9(n) # 0}. We then define Hy(T) as the vector
space of all f € L2(T) such that

£ 2
Ol

f(n) = 0 whenever 8(n) = 0 and 1113 = 2

nex(o)

(13)
H(T) is a Hilbert space with the inner product

(f.9% = ) Fogmom™

nex(o)

with the corresponding norm given in (13).
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If f € Hy(T), then Tnez |f ()] < |IfIlo Znez 8(n) < . Hence f equals
almost everywhere a continuous function (namely its uniformly convergent

Fourier series). Thus, we shall assume that elements of Hy(T) are
continuous functions.

We summarize some basic properties of Hg(T) in the following lemma.
Lemma 4.1 Let f € Hy(T) and x € R. Then
(a) 6x € Hy(T) and 116115 = 6(0). (Here, 8,(t) = 6(t — x).)
) f(x) = (f,0x)e

4.2 Bernstein-Szego inequalities for Fourier multiplier operators on
Sobolev spaces in L?(T)

In this section, we shall fix a function 6 in L? (T) satisfying (4.1): 8(n) = 0
for each n € Z and Y.,ez O(n) < . For simplicity of notation, we shall
assume that 8(0) = 1 and

6(n) = §(—n) for each n € Z. (14)

Theorem 4.2 Let {0,,: n € 7} be a sequence of complex numbers such that

{O(n)ci:n € 7} € IY(Z) N 1%(Z),
and with
On = —0_y foreach n € L. (15)
Suppose either

(@) inf{lo,|:n € 2(6)} >0 or (b) sup{|o,|:n € Z(0)} < co.

Let f € Hy(T), x € R and define

SF@) = ) fmane™. (16)

nez
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Then
-1
If(x)|2+<2 5(")|0n|2> ISFEOI> < 1If115. (17)

Proof. We shall only give a sketch of the proof as it follows the same lines
as that of Theorem 3.2. Define ¥ € L?(T) such that )(n) = 8(n)|o,|? for
eachn € Z.

Suppose (a) holds. Then Hy(T) c Hy(T) and that the inclusion is
bounded. Moreover, S:Hg(T) — Hy,(T) is bounded as well. The desired
estimate is obtained by applying Lemma 2.1 with H = Hy(T), X =
Hy(T), S as defined in (16), and T:Hg(T) - Hy(T) as the inclusion
mapping.

The adjoint S*:Hy,(T) > Ha(T) satisfies S*P,(n) = 6(n)oe™™ for
each n € Z. Thus,

1" ll} = )" O@)lonl?

nez
Moreover, by (14) and (15), we have
(5P = ) 87 =0, (18)
nez

On the other hand, the adjoint T*:Hy,(T) — Hg(T) satisfies:
T*Y, = 6. Thus,
T Pellg = 116x115 = 6(0) = 1. (19)
In view of (6), G(x) as given in (4) is identically zero while A(x) as given
in (2) becomes
A = ISell3 = 0ol
nez

In view of (19), (3) now implies (17).

Now, suppose (b) holds. Then S maps Hy(T) into itself. The
desired estimate (17) is obtained similarly as above by applying Lemma 2.1
with H = K = Hy(T), S: Hg(T) —» Hg(T) as given in (16), and T as the
identity map on Hy (T). O
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A special case of Theorem 4.2 yields an L?- version of the classical
Bernstein-Szegd inequality.

Corollary 4.3 Let 0 and T be trigonometric polynomials of degree at most
d. Suppose 8(n) > 0 and 8(n) = 8(—n) for each |n| < d and 6(0) = 1.

Then for any positive odd integer k and x € R,
d

TCOP +d 2K TOP < )

n=-d

IT(m)|?
O(n)

Proof. We apply Theorem 4.2 with o, = (in)* and 6 as given in the
statement of the corollary. Note that Hg (T) is precisely the vector space of
polynomials of degree at most d. O
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