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ABSTRACT 

Let � and � be bounded linear operators from a Hilbert space � into a reproducing 

kernel Hilbert space � of complex or real-valued functions defined on some set �. 

For each � � �, let �	 � � have the property that 
�, �	
 � ���� for each � � �. 

Using Bessel's inequality, we obtain a sharp estimate relating �����, �����, ���	 

and ���	. This estimate is then applied to obtain Bernstein-Szegö inequalities for 

Fourier multiplier operators on Sobolev spaces in ��.  
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1. INTRODUCTION  

 

The classical Bernstein-Szegö inequality states that  

 
 ������ � ������� � ��max��� |����|� 
 

for each real number �, and for each real trigonometric polynomial � of 

degree at most �. This was extended to entire functions of exponential type 

by Duffin and Schaeffer (1937). They showed that for any real number �,  
 
                                      ������ � !������ � !�sup%�� |��&�|�                           �1� 

 

if � is an entire function of exponential type !, and real-valued on the real 
line. These kinds of estimates have also been extended to rational functions 

by Borwein et al. (1994). For example, given a sequence ()*+*,-�.  in / with Im )* 1 0 and any real trigonometric polynomial � of degree at most �,  
 ������ � 3.��������� � 3.����max%�� |��&�|� 
  
 

 

for each � � � where 
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���� �  ����∏  
�.*,- |sin��� 7 )*�/2�|     and    3.��� � 12 ;  

�.

*,-
1 7 |<=>?|�

|<=>? 7 <=	|�. 
 

For this, we refer the reader to Borwein and Erdélyi (1995), which also 

serves as an excellent survey. 

 

Our goal in this note is to unify �� versions of these inequalities by 

considering abstract bounded linear operators on reproducing kernel Hilbert 

spaces. These are Hilbert spaces �  consisting of complex or real-valued 

functions defined on some set �, and such that for each � � �, the mapping � A ���� is a continuous function from � into /. Consequently, for each � �   �, there exists a function �	 � � satisfying 
�, �	
 � ���� for each � � �. The reader may consult Partington (1997) for a brief introduction to 
reproducing kernel Hilbert spaces. 

 

In this note, for example, we obtain an ��-version of Duffin and 

Schaeffer's inequality (1.1) for operators of the form  
 

����� � B  � C�&��D�&�<=%	E& 

 

applied to Sobolev spaces in �����, where �D denotes the Fourier transform 

of �. 

 

 

2.  THE BASIC ESTIMATE 
 

In what follows, �  and �  shall denote real or complex Hilbert 

spaces where � consists of functions �: � A /, and � is some given set. 

The inner products and norms in �  and �  will be denoted by 
G,G
� ,  || G ||� , 
G,G
� and || G ||� respectively. Furthermore, we shall assume that � is a reproducing kernel Hilbert space. In other words, for each � � �, 

there exists �	 � � such that 
�, �	
� � ����, for all � � �. 
    

We now give the basic estimate. 
 

Lemma 2.1 Let �, �: � A � be bounded linear operators with adjoints �� 

and ��  respectively. Fix � � �  and � � �  such that ���	  and ���	  are 

linearly independent . Then  
 Δ���: � ||���	||�� 7 ||���	||�I�|�����	����|� 1 0            �2� 
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and  |�����|�
||���	||�� � |����� 7 J��������|�

Δ��� � ||�||�� .                 �3� 

 
with  J��� � ||���	||�I������	����                               �4� 

 

Proof. First of all, linear independence of the vectors ���	  and ���	  

implies that the vector ||���	||�� ���	 7 
���	 , ���	
����	  is nonzero. 

Moreover, since 
���	 , ���	
� � �����	���� the square of its norm is  
 
 ||||���	||�� ���	 7 
���	 , ���	
����	||��  

 

                        � ||���	||�M ||���	||�� 7 |����	���|�||���	||��      
                                 

         � ||���	||�M Δ���, 
 
 

with Δ��� given in (2). Hence, Δ��� 1 0. 

 
The remainder of the proof consists of a simple application of 

Bessel's inequality to the orthonormal vectors  

 
 

N �  ���	||���	||�     and    O �  ||���	||�� ���	 7 
���	 , ���	
����	||���	||�� PΔ��� . 
  

 

Observe that 
�, ���	
� � 
��, �	
� � ����� and therefore  

 
 

|
�, N
�|� � |�����|�
||���	||�� .                                     �5� 

 

Furthermore, we have  
 

|
�, O
�|� �  |||���	||�� ����� 7 �����	���������|�
||���	||�M Δ���  

     

�   |����� 7 J�������� |�
Δ��� .                                        �6� 

 

 

 
In view of (5) and (6), Bessel's inequality  
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 |
�, N
�|� � |
�, O
�|� � ||�||��                               �7� 

 
 

gives the desired estimate (3). □ 

 
Remark 2.2 Since Bessel's inequality (7) becomes an equality if �  is a 

linear combination of N and O, (3) becomes an equality if � is taken to be a 

linear combination of ���	  and ���	 .  

 
 

3. BERNSTEIN- SZEGÖ INEQUALITIES FOR NON-
ANALYTIC FUNCTIONS 

Our main result in this section is an ��  version of Duffin and 
Schaeffer's Bernstein-Szegö inequality for a wide class of smooth functions 

including non-analytic ones. 

 

3.1  Sobolev spaces in TU as reproducing kernel Hilbert spaces 
  

For a function � � �-���, we define its Fourier transform �D by  
 

�D�V� �  1
√2X B  � ����<I=Y	E�  

 
 

for all V � �.  Accordingly, the inversion formula is given by  
 

���� �  1
√2X B  � �D�V�<=Y	EV,                               �8� 

 
 

valid for almost every � � � for instance when � � �- � �� and �D � �- . For 
example, see Rudin (1974). 

 

In what follows, we shall fix [ � ����� such that  

 [\ is real-valued, non-negative, and bounded with [\ � �-���    �9�  
 

 

and write Σ�[� � (& � �: [\�&� _ 0+. Let �`��� be the vector space of all 

functions �: � A / in ����� such that  
 �D�&� � 0  whenever [\�&� � 0 and 
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 ||�||�̀ � 1
√2X B  a�`� |�D�&�|� E&

[\�&� b ∞.                        �10� 

 

For �, � � �`���, define  

 


�, �
`  �  1
√2X B  a�`� �D�&��d�&� E&

[\�&�. 
 

 

This defines an inner product making �`���  a Hilbert space. The 

corresponding norm is that given in (10).  
 

If � � �`���, then �D  is integrable and the inversion formula (8) 

shows that �  equals almost everywhere a continuous function. Thus, we 

shall assume that elements of �`��� are continuous. 

 

For �, & � �,  define [	�&� � [�& 7 ��.  The next lemma 

summarizes some basic properties of the Hilbert space �`���. 

 

Lemma 3.1 Let � � �`��� and � � �. Then   

 

              (a)  [	 � �`��� and ||[	||�̀ � [�0�.  

 (b)  ���� � 
�, [	
`.  

  

3.2  Bernstein-Szegö inequality for non-analytic functions 

In this section, we fix a function [ in ����� satisfying (9):  
 

 [\ is real-valued, non-negative, bounded, and integrable on �. 
 

 

Furthermore, we shall assume [�0� � 1 and [\ is even. 

 

Theorem 3.2 Let C: � A / be odd, not identically constant on e�[� �(& � �: [\�&� _ 0+ and such that [\ G C� � ����� f �-���. Suppose either  
 
 �g� inf(|C�&�|: & � Σ�[�+ 1 0  ij  �3� sup(|C�&�|: & � Σ�[�+ b ∞.   �11� 
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Let � � �`���, � � � and define  
 

����� � 1
√2X B  � C�&��D�&�<=	%E&.                            �12� 

 

 

Then  
 

|����|� � ΔI�|�����|�   �   1
√2X B  a�`� |�D�&�|� E&

[\�&�            �13� 

 

where 

Δ� � 1
√2X B  � |C�&�|�[\�&�E&. 

   

Proof. Define k � �����  such that kd � [\|C|� . Trivially, Σ�k� l Σ�[� . 

Suppose (A) holds and let mn  �  inf(|C�&�|:  & � Σ�[�+ 1 0 . Then Σ�k� � Σ�[�. Moreover,  

 
 �`��� l �o���.                                           �14�  
Indeed, let � � �`���. If kd�&� � 0, then [\�&� � 0 and by (10), �d�&� � 0. 

Moreover,  
 

||�||o� �  1
√2X B  a�o� |�d�&�|� E&kd�&�   � mnI�||�||�̀ . 

 

 

Thus, (14) holds and, in fact, the inclusion is bounded. 
 

For each p � �`���, we have  
 

||�p||o� �  1
√2X B  a�o� |C�&�p\�&�|�kd�&�I-E& � ||p||�̀ . 

 

 

Thus �: �`��� A �o��� is bounded as well. In fact, � is an isometry. 

 
To obtain the desired inequality (13), we shall apply Lemma 2.1 with � � �`���, � � �o���, �: �`��� A �o��� as given in (12) and with �: �`��� A �o��� as the inclusion map. 
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To find the adjoint ��: �o��� A �`���, observe that for  � � �o��� and � � �`���,  

 
 

                1
√2X B  a�`� ���q �&��D�&� E&

[\�&� � 
���, �
` 

                                                                    � 
�, �
o 
 

                                              � 1
√2X B  a�o� �d�&��D�&� E&kd�&�. 

 

 

This shows that ���q �&�  �  �d�&�[\�&�kd�&�I-  whenever & � Σ�k�  and ���q �&� � 0 otherwise. In particular  

 
 ��k	r �&� �  <I=%	[\�&� �  [	q�&�                               �15� 

 
 

for all & � �. Thus, ��k	 � [	  and by Lemma 3.1,  

 
 ||��k	||�̀ �  ||[	||�̀ �  [�0� � 1.                            �16� 

 

Next, we compute for the adjoint of �, ��: �o��� A �`���.  

 

A straightforward calculation shows that for all � � �o���  and � ��`���,  
 

                  1
√2X B  a�`�

���q �&��D�&�
[\�&�   E& � 
���, �
` 

               � 
�, ��
o 
 

                                                     � 1
√2X B  a�o�

�d�&�C�&��D�&�kd�&�   E&.  
 

 

This shows that ���q �&� � �d�&�C�&�[\�&�kd�&�I-  whenever & � Σ�k�  and ���q �&� � 0 otherwise. In particular,  
 
 ��k	r �&� � <I=%	C�&�[\�&�                                 �17� 
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for each & � �. Hence,  
 

||��k	||�̀ �  1
√2X B  � |C�&�|�[\�&�E&                        �18� 

 

and since C[\ is an odd function,  
 

���k	���� � 
��k	 , [	
` �  1
√2X B  � C�&�[\�&�E& � 0. 

 

Thus, J��� as defined in (4) is identically zero. Likewise, in view of (18), Δ��� as defined in (2) becomes 
 

Δ��� � 1
√2X B  � |C�&�|�[\�&�E&. 

 

Our hypothesis that C is not identically constant on Σ�[� together with (15) 

and (17) shows that ��k	  and ��k	  are linearly independent. In view of 

(16), the estimate (3) now implies the desired result (13). 
 

Now, suppose (B) holds and let ms �  sup(|C�&�|:  & � Σ�[�+ b ∞. Then ||��|t|�̀  �  ms� ||�|t|�̀  for each � � �`��� . Thus, �  maps �`��� 

boundedly into itself. The desired estimate (13) is obtained by applying 

Lemma 2.1 with � � � � �`���, �: �`��� A �`��� as given in (12) 

and with �: �`��� A �`��� as the identity. □ 
 

A special case of Theorem 3.2 gives an ��-version of Duffin and Schaeffer's 

inequality (1) for higher order derivatives. 

 

Corollary 3.3 Let ! 1 0 and � be an odd positive integer. Let �, [ � ����� 

such that �D�&� � 0 � [\�&� whenever |&| 1 !. Then  
 
 

|����|� � !I�*|��*����|� � 1
√2X B  

u
Iu

|�D�&�|�
[\�&� E& 

 
 

provided [\ is real-valued, even, inf([\�&�: |&| � !+ 1 0 and [�0� � 1.  
 

Proof. Apply Theorem 3.2 with C�&� � �v&�*  and with [ � ����� 

satisfying the hypotheses of the corollary: [�0� � 1, [\ is even, real-valued 

and 0 on   �\x7!, !y, and inf([\�&�: |&| � !+ 1 0. Then condition (B) in (11) 

is satisfied. Note that �`��� is the set of all functions � � ����� such that �d�&� � 0 whenever |&| 1 !. Observe that by the inversion formula (8),  
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         Δ��C, [�  �  1
√2X B  � |C�&�|�[\�&�E&  �   !�* .     z 

 

 

 

4. BERNSTEIN-SZEGÖ INEQUALITIES  

FOR SOBOLEV SPACES IN TU�{� 

Here, we shall obtain periodic versions of the results of the 

preceding section. First, we introduce certain reproducing kernel Hilbert 

spaces consisting of 2X-periodic continuous functions. 

 

4.1 Reproducing kernel Hilbert spaces of continuous periodic functions 

Let ���{�  be the Hilbert space of all measurable 2X -periodic functions �: � A / with |  
}I} |��&�|�E& b ∞. For � � ���{� and � � ~, we define the �th Fourier coefficient of � by  

 

�D��� � 12X B  

}
I} ��&�<I=.%E&. 

 

Let � � ���{� such that  

 
 

 �\��� � 0 for each � � ~  and  ∑  .�~ �\��� b ∞                �12�  
 
 

and let Σ��� � (� � ~: �\��� _ 0+ . We then define ���{� as the vector 

space of all � � ���{� such that  
 

 �D��� � 0 whenever  �\��� � 0 and   ||�||�� � ;  

.�a���
|�D���|�

�\���  b ∞.    �13� 

 
 ���{� is a Hilbert space with the inner product  

 
 
�, �
�   �   ;  

.�a���
�D����d����\���I- 

 

 

with the corresponding norm given in (13). 
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If � � ���{�, then ∑  .�~ |�D���| � ||�||� ∑  .�~ �\��� b ∞. Hence � equals 
almost everywhere a continuous function (namely its uniformly convergent 

Fourier series). Thus, we shall assume that elements of ���{�  are 

continuous functions. 
 

 

We summarize some basic properties of ���{� in the following lemma.  

 

Lemma 4.1 Let � � ���{� and � � �. Then   

 

(a)  �	 � �`�{� and ||�	||�� � ��0�. (Here, �	�&� � ��& 7 ��.)  

(b)  ����   �   
�, �	
�.  
  

 

4.2 Bernstein-Szegö inequalities for Fourier multiplier operators on 
Sobolev spaces in TU�{� 

In this section, we shall fix a function � in ���{� satisfying (4.1): �\��� � 0 

for each � � ~ and ∑  .�~ �\��� b ∞. For simplicity of notation, we shall 

assume that ��0� � 1 and  

 
 �\��� � �\�7�� for each � � ~.                                �14� 

 
Theorem 4.2 Let (�.: � � ~+ be a sequence of complex numbers such that  

 
 (�\����.�: � � ~+ � �-�~� f ���~�, 
 

and with  
 �. � 7�I.  for each  � � ~.                                 �15� 
  

Suppose either  

 
 �)�  inf(|�.|: � � Σ���+ 1 0    ij    ���  sup(|�.|: � � Σ���+ b ∞. 
  

 

Let � � ���{�, � � � and define  

 
 ����� � ;  

.�~
�D����.<=.	 .                                   �16� 
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Then  
 

|����|� � �;  

.�~
�\���|�.|��

I-
|�����|�   �   ||�||�� .            �17� 

   

Proof. We shall only give a sketch of the proof as it follows the same lines 

as that of Theorem 3.2. Define � � ���{� such that �\��� � �\���|�.|� for 

each � � ~. 

Suppose (a) holds. Then ���{� l ���{�  and that the inclusion is 

bounded. Moreover, �: ���{� A ���{� is bounded as well. The desired 

estimate is obtained by applying Lemma 2.1 with � � ���{� , � ����{� , �  as defined in (16), and �: ���{� A ���{�  as the inclusion 

mapping.  
 

The adjoint ��: ���{� A ���{�  satisfies ���	r ��� � �\����.<I=.	  for 

each � � ~. Thus, 
 ||���	||�� � ;  

.�~
�\���|�.|�. 

 

 

Moreover, by (14) and (15), we have  

 
 ����	���� � ;  

.�~
�\����. � 0.                               �18� 

 

On the other hand, the adjoint ��: ���{� A ���{�  satisfies: ���	 � �	 . Thus,  
 ||���	||��  � ||�	||��  � ��0� � 1.                            �19� 

 

In view of (6), J��� as given in (4) is identically zero while Δ��� as given 
in (2) becomes  

Δ��� � ||���	||��   � ;  

.�~
�\���|�.|�. 

 

In view of (19), (3) now implies (17). 
 

 

Now, suppose (b) holds. Then �  maps ���{�  into itself. The 
desired estimate (17) is obtained similarly as above by applying Lemma 2.1 

with � � � � ���{�, �: ���{� A ���{� as given in (16), and � as the 

identity map on ���{�. □ 
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A special case of Theorem 4.2 yields an ��- version of the classical 
Bernstein-Szegö inequality. 

 

Corollary 4.3 Let � and � be trigonometric polynomials of degree at most E. Suppose �\��� 1 0  and  �\��� � �\�7��  for each  |�| � E and ��0� � 1. 

Then for any positive odd integer � and � � �,  

|����|� � EI�*|��*����|� � ;  

�

.,I�
|�\���|�

�\��� . 
 

Proof. We apply Theorem 4.2 with �. � �v��*  and �  as given in the 

statement of the corollary. Note that ���{� is precisely the vector space of 

polynomials of degree at most E. □ 
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